Logarithmic Bergman Kernel and Conditional Expectation of Gaussian Holomorphic Fields
نویسندگان
چکیده
We prove the asymptotic of logarithmic Bergman kernel. And as an application, we calculate conditional expectation density zeros Gaussian random sections powers a positive line bundle that vanish along fixed smooth subvariety.
منابع مشابه
The Bergman Kernel Function and Proper Holomorphic Mappings
It is proved that a proper holomorphic mapping / between bounded complete Reinhardt domains extends holomorphically past the boundary and that if, in addition, /~'(0) = {0}, then / is a polynomial mapping. The proof is accomplished via a transformation rule for the Bergman kernel function under proper holomorphic mappings.
متن کاملLogarithmic Opinion Pools for Conditional Random Fields
Since their recent introduction, conditional random fields (CRFs) have been successfully applied to a multitude of structured labelling tasks in many different domains. Examples include natural language processing (NLP), bioinformatics and computer vision. Within NLP itself we have seen many different application areas, like named entity recognition, shallow parsing, information extraction from...
متن کاملNeural Gaussian Conditional Random Fields
We propose a Conditional Random Field (CRF) model for structured regression. By constraining the feature functions as quadratic functions of outputs, the model can be conveniently represented in a Gaussian canonical form. We improved the representational power of the resulting Gaussian CRF (GCRF) model by (1) introducing an adaptive feature function that can learn nonlinear relationships betwee...
متن کاملGaussian Curvature of the Bergman Metric with Weighted Bergman Kernel on the Unit Disc
In the paper Gaussian curvature of Bergman metric on the unit disc and the dependence of this curvature on the weight function has been studied.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometric Analysis
سال: 2021
ISSN: ['1559-002X', '1050-6926']
DOI: https://doi.org/10.1007/s12220-020-00602-z